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Characteristics of wave propagation in an undamaged composite medium are
influenced by many factors, the most important of which are: microstructure, consti-
tuent properties, interfaces, residual stress fields, and ply lay-ups. Measurements of
wave velocities, attenuation, and dispersion provide a powerful tool for nondestruc-
tive evaluation of these properties. In this paper we review recent developments in
modeling of ultrasonic wave propagation in fiber and particle reinforced composite
media. Additionally, we discuss some modeling studies of the effects of interfaces
and layering on attenuation and dispersion. These studies indicate possible ways of
characterizing material properties by ultrasonic means. .

1. INTRODUCTION

Ultrasonic waves provide an efficient means of characterizing the effective mechanical proper-
ties of a nonhomogeneous material. Several theoretical studies show that for long wavelengths
one can model the effective wave speeds and attenuation of plane longitudinal and shear waves
propagating through a medium containing a distribution of inclusions or fibers. It is possible
also to model the changes in speeds and attenuation of waves propagating in the presence of
microcracks or voids. At long wavelengths the wave speeds predicted by these models are non-
dispersive and hence provide the values for the static elastic moduli of the bulk material.

Speeds of propagation of elastic waves in the presence of a distribution of inclusions have been
modeled [1-91. References to other works can be found in those cited and in the review articles
[10,11]. Although most of the early works dealt with spherical inclusions, effect of inclusion
shape and orientation has been modeled in [4,6-9]. Anisotropic wave speeds caused by oriented
ellipsoidal inclusions were modeled and compared with experiments [9].
As a special case of propagation through a particle-reinforced composite one can also obtain the
results for a medium permeated by cracks or voids (pores). There are numerous works that have
dealt with the problem of speed and attenuation of waves in such a medium. References to these
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can be found in [12-151. Effect of void shape on phase velocities has been reported in [10] and
1151.
Most of the works dealing with particle reinforced composites have assumed perfect bonding
between the inclusions and the matrix material. Effect of interface (interphase) layers has
received some attention [3,16-20]. It has been found that diffuse interface has very weak
influence on wave propagation characteristics. However, effect of an interface layer is quite pro-
nounced. Such a layer increases attenuation. Both the density and stiffness of the layer, and the
curvature of the interface affect the attenuation.

The literature on wave propagation in a fiber-reinforced composite material is vast. There are
numerous models that have been proposed to predict dispersion and attenuation of elastic waves
propagating perpendicular to the aligned continuous fibers. References to many of the works
can be found in [21]. Most of the reported works deal with isotropic fibers. Anisotropic fibers
were considered in [21,22]. In [22] model predictions in conjunction with experiment were used
to inversely determine the graphite fiber transverse isotropic elastic constants.

Because most structural composites are laminated or layered, wave propagation in laminated
composite plates and shells has received considerable attention. Several papers in this volume
deal with this problem and the reader is referred to those for additional references.

In this paper we will focus our attention on guided wave propagation in a composite plate. Two
problems will be considered: (1) Guided waves in a cross-ply periodically laminated plate, and
(2) dispersion of waves in a bonded plate with isotropic homogeneous layers. These two prob-
lems are chosen to illustrate the effect of layering and the interface (bond) layer properties on the
dispersion characteristics of guided waves.

2. PROBLEM FORMULATION AND SOLUTION

In this section we will first consider a periodically laminated composite plate where each lamina
is made up of a continuous fiber reinforced material. Then in the second part of the section we
will discuss guided waves in a plate made up of two isotropic homogeneous layers bonded
together by a thin layer of bond material.

2.1 Guided waves in a cross-ply laminated plate

Consider a cross-ply laminated plate, which is composed of alternate layers of continuous fiber
reinforced materials of equal thickness. It will be assumed that fibers are oriented at 900 to one
another in adjacent layers and that the configuration is symmetric in the plate. Thus the top and
bottom layers have fibers oriented in the same direction. A global Cartesian coordinate system
with origin on the mid-plane of the middle layer will be chosen. x-axis is chosen parallel to the
direction of propagating guided waves which is either parallel or perpendicular to the fibers in
the middle layers. y-axis lies in the middle plane and z-axis perpendicular to the plane. The
thickness of the plate is taken to be H so that the thickness of each lamina is h=H/n, where n is
the number of laminae.
If the wavelengths of the propagating waves are much larger than the fiber diameters and spac-
ings then, as has been shown before [21,22], each lamina can be modeled as transversely isotro-
pic with the symmetry axis parallel to the fibers. Thus the problem reduces to that of wave pro-
pagation in a plate with layers of transversely isotropic material, where the axes of symmetry in
adjacent layers are perpendicular to one another. Our object here is to analyze the effect of the
number of layers on dispersion of guided waves propagating either along the x-axis or along the
y-axis.

Since we will be considering a large and varying number of layers it will be convenient to resort
to a numerical technique in which the number and properties of layers can be altered arbitrarily
without substantially changing the solution procedure. Such a technique was proposed earlier by
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us 1231 and also by others [24-261. In [24-26] authors present a stiffness method in which the
thickness variations of the displacements are approximated by quadratic functions of the thick-
ness variable. The generalized coordinates in this prepresentation are the displacements at the
top, middle, and bottom of each layer. In 123] an alternative higher order polynomial representa-
tion was proposed where generalized coordinates were the displacements and tractions at the top
and bottom of each layer. This was found to give better results at high frequencies. However,
because both displacements and tractions were involved, it entailed much more cumbersome
algebra than the scheme used in [24-26]. To avoid this algebraic complexity we will use the
quadratic interpolation functions used in [24-26].

Since we consider waves propagating either in the symmetry direction or perpendicular to it in
each layer, the problem separates into two uncoupled ones: plane strain in which the displace-
ment components are u., 0, u., and SH or antiplane strain when the only non-zero displacement
is uy. In this paper we will consider the plane strain problem only.

In order to achieve numerical accuracy each lamina is divided into several sublayers. A local
coordinate system (x0), 0, z()) is chosen in each sublayer with the origin in the mid-plane. The
strain-displacement relations in each sublayer are, for non-vanishing strain components,

k) , g)=U) , -2 -

where comma denotes differentiation. The stress-strain relation in this sublayer is

{o) = Ica )] (E) (2)

where

S . 1 ol (3a)

le rT E .,, y.1 (3b)

0 0c )j

For convenience the superscript (k) on u, a, and E has been dropped above and in the subsequent
development. Using the interpolation polynomials in the z-direction, the displacement com-
ponents are approximated as,

(U) = [NJ (q} (4)

where

[UIT = [u.,u,. (Sa)

{q}T= [ub, uz, f, u ] , U (5b)
n, 0 n2 0 n3 0;

IN)= n 2 0 n 0n (5c)

In equation (5) the generalized displacements ub(x,t), ub(x,t), u."(xt), u,"(x,t), uf(x,t), and uf(x,t)
are taken at the back, middle, and front (top) nodal surfaces of the sublayer. The interpolation
polynomials ni are quadratic functions given by

rlt = _2+222, n2 = 1-42', n3 = 2 2+ (6)

where 2=z(a)/h a ), 0 ) being the thickness of the sublayer.

Using Hamilton's principle the governing equation for the entire plate is found [261 to be
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[K.][Q)" + [K2][Q}'- [K3 1{Q} - [M](I =0 (7)

Here [KI], [K31, and [M] are symmetric and [K2 1 is skew symmetric. Primes and dots denote dif-

ferentiation with respect to x and t, respectively. {Q)is the vector of all the nodal displacement
components. We will consider propagating waves in the x-direction. Thus (Q] is assumed of
the form

(Q} - {Q) (8)

Substituting (8) in (7) we get the eigenvalue problem

[-Kk 2 + K2*ik - K3 + M(0,
2 {Q.) = 0 (9)

Equation (3) can be solved to find a for a given k or to find k for given co. Some results are dis-
cussed in section 3.

2.2 Rayleigh-Lamb Waves in a Bonded Plate

The characterization of bond quality using ultrasonic techniques has long been a subject of study
by many researchers. Ultrasonic methods provide a powerful tool for detecting debonding or
weakening of bond strength. Their success in measuring bond strength largely depends on the

understanding of the nature of the changes in the wave propagation characteristics due to the
changes in the material properties of the bond layer.

A study of guided waves in thin layers can be found in [27]. For thin bonded layers there have
been several studies [28-34]. In most of these the case of normal incidence is considered.
Oblique incidence has been considered in [35]. In these studies the bond layer is approximated
as a massless spring or a fluid layer that allows jump in the displacement keeping tractions con-
tinuous. Attempts at using this spring or slip model to detect weak bonding has shown its appli-
cability to a class of bonds, althougi there are indications that adjustable coefficients may be
needed to explain the behavior at high frequencies [35-37]. In [20,36,37] a shell model that
combines the effects of density (inertia) and stiffness has been developed to study scattering
from inclusions with thin interface (bond) layers. It is found that the effect of density dominates
in the cases considered. Baik and Thompson [381 have also considered a shell model to analyze
dispersive behavior and a density model has been used by Nayfeh and Nassar [39].

In an effort to assess the feasibility of characterizing bond properties by ultrasonic means we
[40] have made a parametric study of the exact spring and density models for the thin interface
layer in a bonded plate. A summary of the results is presented in the following.

We consider a sandwich plate of two outer layers and an interface thin bond layer of materials
that are isotropic and homogeneous. A global Cartesian coordinate system (x,yz) with origin at
the free surface of the top layer, and x,y-axis parallel and z-axis perpendicular to the surface, is
considered. For convenience our attention will be focused on the two-dimensional problem.
Thus it is assumed that the displacement components (u1,0,u,) uncouples from the antiplane
strain motion (0,uy,0). Here we present some results for the plane strain case.

In plane strain deformation the nonzero displacements and tractions at an interface z=constant

form a four vector

(S) = [un. u,. ;,, (10)

Let (S-) and (S*) denote the values of the four vector (S) as z-h- and h+, respectively. Here
z=h is the depth of an interface from the top free surface. If the bond is perfect at the interface
then
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Now consider two layers occupying 0zh i and h2 .h3 are bonded together by a thin layer of
thickness h2 -hj=h0. If h0 is very small compared to h, h3-h 2, and the wavelength of the pro-
pagating wave, then the thin layer is often approximated as one of vanishing thickness and the
interface conditions are applied at z=hl=h2 . In the shell model it is assumed that

0F +
(S-s= , - - 1)0 s-+s~l (12)

where

h0  h.
[F] = Diag[a a . 1 (13)

ID] = Diagl-bpw 0h. - bpo0h] (14)

where a,b are some parameters, and k., N, and p, are the Lam6 constants and density, respec-
tively, of the layer. In writing (12) a harmonic time dependence of the form e- i " has been
assumed, o being the circular frequency. Note that when a=0 one obtains the density model and
for b=0 the spring model holds.

Equation (12) is often an adequate approximation for the thin layer, the regimes of validity of
which have not been systematically investigated. In [40] a parametric study has beti performed
for a typical plate. Some of these results are discussed in the next section.

3. NUMERICAL RESULTS AND DISCUSSION
In this section we present some selected numerical results showing the effect of the number of
layers and bond properties on the dispersion of guided waves.

3.1 Dispersion of Waves in a Laminated Plate

In order to understand the effect of the number of laminae we consider a graphite fiber-
reinforced laminate. The properties of 0 ° and 90 ° laminae are given in Table 1. Here 00
signifies fibers aligned with the wave propagation direction (x-axis) and 900 signifies fibers
aligned with the y-axis.

Table 1. Properties of the laminae

(All stiffnesses are in units of 10" Nlm2 )

Layer p(g/cmt) cl, C33  c1 3 I c 4 c55
0 lamina 1.2 11.6073 0.1392 0.0644 0.0350 0.0707
900 lamina 1.2 0.1391 0.1392 0.0350 0.0707 0.0350

Figures 1(a) and 2(a) show the variation of phase velocities of different modes with frequency in
three-layered (0'/90/0*) and 39-layered (...0j90o/0...) plates. Corresponding results for propa-
gation in differently oriented plates (900/00/900 ;...90/0/900 ... ) are presented in Figures 1(b) and
2(b). It is seen that dispersion characteristics depicted by Figs. 1(a) and 1(b) are vastly different.
However, Figs. 2(a) and 2(b) are remarkably similar. In fact, these results agree quite well with
predictions of an effective modulus theory (for details the reader is referred to (411). Thus it
appears that for a sufficiently large number of layers the plate behaves isotropically in its plane.
This is a remarkable result and clearly the number of layers necessary to show in-plane isotropic
behavior must depend on the material properties and stacking sequence of the laminae. We hope
to pursue this further in the future.
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FIGURE 1
Guided waves in a (0*/90*/00) three-layered plate.

(a) Propagation in the 00 direction. (b) Propagation in the 900 direction.
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FIGURE 2
Same as Figure I for a 39-layered plate.
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3.2 Interface Layer Effects on Dispersion

To exhibit the implications of different approximations of thin interface layers on the dispersion
of guided waves we consider a plate made up of an outer layer of gold on a nickel-iron substrate.
Properties are given in Table 2. Properties of the interface layer are varied.

Table 2. Properties of a Bonded Plate
(Longitudinal wave speed=cp, Shear wave speed=c,)

Material p 3 cp c, Thickness
(g/cm 3) (mm/;ts) (mm/ps) (mm)

Gold (au) 19.32 3.24 1.22 0.45
Bond ...... 0.5
Fe - 42% Ni 8.10 4.86 2.60 10.0

Figures 3 and 4 show the dispersion curves predicted by the actual model and those obtained by
the approximate spring and mass models. In these figures M is the ratio of the shear moduli of
the bond layer and the gold layer, and D is the ratio of the densities. It is seen from Fig. 3 that
when the bond layer has both high modulus and high density then the spring model predictions
are higher than the actual. In this case the density model predictions are very close to the actual
for all the modes except the third, when the results agree only at low frequencies. The reason for
this anomalous behavior is not clear. Figure 4 shows the results for the case when the bond layer
is very weak (low density and low modulus). It is seen that in this case the spring model agrees
very well with the exact, whereas the density model predictions ate higher. It is interesting to
note that in both cases the two model predictions become close to the exact at high frequencies
for all the modes except the first and the third. Other features (not shown) of interest are:
(a) both the spring and density model predictions agree with the exact when the bond is high

modulus and low density;
(b) none of the models is very good for all the modes when the bond is low modulus and high

density.

4. CONCLUSION

It has been demonstrated that ultrasonic velocity techniques provide sensitive means of charac-
terizing the properties of bulk composite materials and interfaces between the different phases.
It is also shown that dispersion characteristics of waves in a plate are very sensitive to the fol-
lowing parameters:

1. Number of layers and stacking sequence in a laminated plate.

2. Properties of the interface bond layer.

Thus the ultrasonic waves may be used to characterize these properties. Furthermore, it appears
that a laminated plate with a sufficiently large number of layers can be modeled as effectively
quasi-isotropic. This feature may have very important significance for ultrasonic characteriza-
tion of thick composites.
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DISPERSION: Au/Bond/Fe-420/Ni (0.45mm I .O5mm,M=1 0,D=1 0/10Omm)
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DISPERSION: Au/Biond/Fe-42%Ni (0.45mm I .O5mm,M=.1,D=.1 1 10.mm)
10

0 8

2.

E

6-

0 .. . ... .........

...... ... .....

.. 4 0 6 0..... ..... 1 0.....requency (M... ... .....z).....
Exc mode ...... Spin moel ...Dnstymoe

........4
Efec ofa.ihtsftbndly..n.ude.avs



168 S.K. Datta et al.

REFERENCES

[11 Fikioris, J.G. and Waterman, P.C., J. Math Phys. 5 (1964) 1413.

[2] Mal, A.K. and Knopoff, L., J. Inst. Math. Appl. 3 (1967) 376.

[31 Mal, A.K. and Bose, S.K., Proc. Camb. Philos. Soc. 76 (1974) 587.

[4] Datta, S.K., J. Appl. Mech. 44 (1977) 657.

[51 Devaney, A.J., J. Math. Phys. 21 (1980) 2603.
[61 Berryman, J.G., J. Acoust. Soc. Am. 68 (1980) 1809.

[71 Willis, J.R., J. Mech. Phys. Solids 28 (1980) 307.
181 Varadan, V.K., Ma., Y.C., and Varadan, V.V., J. Acoust. Soc. Am. 77 (1985) 375.

19] Ledbetter, H.M. and Datta, S.K., J. Acoust. Soc. Am. 79 (1986) 239.

1101 Datta, S.K. and Ledbetter, H.M., in: Johnson, G.C. (ed.), Wave Propagation in Homogene-
ous Media and Ultrasonic Nondestructive Evaluation, AMD-Vol. 62 (American Society of
Mechanical Engineers, New York, 1984) pp. 141-153.

1111 Datta, S.K. and Ledbetter, H.M., in: Lamb, J.P. (ed.), Proceedings of the Tenth U.S.
National Congress of Applied Mechanics (American Society of Mechanical Engineers,
New York, 1987) pp. 377-387.

112] Chatteujee, A.K., Mal, A.K., Knopoff, L., and Hudson, J.A., Math. Proc. Camb. Phil. Soc.
88 (1980) 547.

[131 Hudson, J.A., Geophys. J. R. Astr. Soc. 64 (1981) 133.

[141 Sayers, C.M., Ultrasonics 26 (1988) 73.

[15] Ledbetter, H.M., Lei, M., and Datta, S.K., in: Holbrook, J. and Bussi~re, J., Proceedings of
the Symposium on Nondestructive Monitoring of Materials Properties (Materials Research
Society, Pittsburgh, PA, 1989).

[161 Sayers, C.M., Wave.Motion 7 (1985) 95.

[171.Dana, S.K)And Ledbetter, H.M., in : Selvadurai, A.P.S. and Voyiadjis, G.Z. (eds.),
,Mechanics of Materials Interfaces (Elsevier, Amsterdam, 1986) pp. 131-141.

[18] batta, S.K., Ledbetter, H.M., Shindo, Y., and Shah, A.H., Wave Motion 10 (1988) 171.

[19] Paskaramoorty, 4., Datta, S.K., and Shah, A.H., J. Appl. Mech. (1988) 871.

[20 Olsson . P..Datta, S.K., and Bostr6m, A., Elastodynamics Scattering from Inclusions Sur-
rounded by Thin Interface Layers. to be published.

[211 Datta; S.K.,Ledbetter, H.M.. and Kriz, R.D., Int. J. Solids Str. 20 (1984) 429.

[221 Ledbetter, H.M., Datta, 5.K., and Kyono, T., J. Appl. Phys. 65 (1989) 3411.

1231 Dana, S.K., Shah, A I., Bratton, R.L., and Chakraborty, T., J. Acoust. Soc. Am. 83 (1988)
2020.

124] Deng, S.B. ane Nelson, R.B., J. Appl. Mech. 39 (1972) 739.

[251 Dong, S.B. and Pauley, K.E., J. Eng. Mech. ASCE, 104 (1978) 802.

[261 Dong, S.B. and Hwang, K.H., J. Appl. Mech. 52 (1985) 433.

127] Farnell, G.W., and Adler, E.L., in: Mason, W.P. and Thurston, R.N. (eds.), Physical Acous-
tics, Vol. 9 (Academic Press, New York, 1972) pp. 35-127.

[281 Jones, J.P. and Whittier, J.S., J. Appl. Mech. 34 (1967) 905.

[291 Alers, G.A. and Graham, L.J., in: de Klerk, J. (ed.), Proceedings of the IEEE Ultrasonics

Symposium (IEEE, New York, 1975) 579.



Wave Propagation in Composite Media 16',

[301 Schoenberg, M., J. Acoust. Soc. Am. 68 (1980) 1516.
1311 Rokhlin, S., Hefets, M., and Rosen, M., J. Appl. Phys., 51 (1980) 3579.
[32] Rokhlin, S., Hefets, M., and Rosen, M., J. Appl. Phys., 52 (1980) 2847.

[33] Rokhlin, S.I. and Marom, D., J. Acoust. Soc. Am. 80 (1986) 585.
[341 Tsukahara, Y. and Ohira, K., Ultrasonics 27 (1989) 3.
[35] Mal, A.K. and Xu, P.-C., in: McCarthy, M.F. and Hayes, M.A. (eds.), Elastic Wave Propa-

gation (North-Holland, Amsterdam, 1979) pp. 67-73.
[36] Datta, S.K., Olsson, P., Bostr6m, A., in: Ting, T.C.T. and Mal, A.K. (eds.), Wave Propaga-

tion in Structural Composites, AMD-Vol. 90 (American Society of Mechanical Engineers,
New York, 1988) pp. 109-116.

[37] Olsson, P., Datta, S.K., and Bostr6m, A., in: McCarthy, M.F. and Hayes, M.A., (eds.), Elas-
tic Wave Propagation (North-Holland, Amsterdam, 1989) pp. 381-386.

1381 Baik, J.M. and Thompson, R.B., J. Nondestr. Eval. 4 (1984) 177.
[39] Nayfeh, A.H. and Nassar, E.A., J. Appl. Mech. 45 (1978) 822.
[40] Xu, P.-C. and Datta, S.K., Guided Waves in a Bonded Plate: A Parametric Study, to be

published.
[41] Karunasena, W., Datta., S.K., and Shah, A.H., Wave Propagation in a Multi-layered Lam-

inated Cross-ply Composite Plate, to be published.

NTIS C A&I
OINC rAe o
UnannOOijrCed 0
JusliCc3tiear

OiStributIon I

AvailaDigiiy Codes

Avij arj(jlOr

Disi vec'ae


